
(Refer Slide Time: 63:00) 

 

So, consider the reference string 2 0 1 6 4 2 0 1 6 4 0 1 0 3 1 2 1. Now here I have 4 page 

frames, let us say my physical memory only has 4 page frames available and these are the set 

of memory accesses. So, initially there is nothing in the physical memory. So, the first 4 misses 

are compulsory the first 4 misses are compulsory misses and. So, I bring in 0 2 1 6, 0 2 1 6 

missed and then what happens 4 comes in whom will 4 replace 0 was the first one to; 0 was the 

first one to come into memory. So, the 0 is the oldest. So, 0 is replaced and with 4.  

Now, 0 is accessed again, now 0 is not there in the physical memory. So, 0 will again lead to 

another page fault and. So, whom will it replace 2 is now the oldest one who which came into 

memory. So, 0 replaces 2 then what happens one comes again one is referenced again this one 

does not result in a miss this one is already there in main memory. And this is not a miss, then 

0 this also does not incur a miss 0 is already there in memory, it does not incur a miss then 3 is 

accessed when 3 is accessed 3 is not there in physical memory whom will it replace? 

It will replace the oldest one because 0 2 1 6 was the order 0 and 2 has already been replaced. 

So, now, the oldest is one now the oldest is to 1. So, 3 replaces 1, 3 replaces 1.  

Now, 1 is accessed again 1 is currently not there in physical memory 3 just replaced 1, 1 

accessed again and then a one incurs a miss again whom does 1 replace will see 1 replaces 6? 

So, 1 replaces 6, now 2 is accessed 2 is accessed 2 is currently not there in physical memory. 

So, 2 replaces 4, 2 replaces 4 and because 4 is now the oldest and then 1 is now there again in 

physical memory. So, what is the fault rate? So, I had 12 the different string is of length 12. 

962



So, I have 12 mem references out of 12 references nine resulted in a fault 1 2 3 4 5 6 7 8 9; 9 

resulted in a fault. So, the fault rate is 9 by 12 or 0.75.  

(Refer Slide Time: 66:05) 

 

So, FIFO although is very simple, I find out the oldest page in memory and replace it, this is 

the algorithm, it’s a poor replacement policy why it evicts the oldest page in the system and it 

does not take care whether this page is being heavily used currently or not, it does sees who 

has been brought at the earliest and it will replace that, it does not care as to which if this page 

is being frequently used. 

So, usually of a heavily used variable in a page should be around for a long time. So, we should 

try to keep a heavily used page for a long time, but FIFO is unaware as to how heavily a page 

is being used and may easily evicted. So, FIFO replaces the oldest page perhaps the one with 

the heavily used variable. 

So, FIFO basically does not consider page usage. 

963



(Refer Slide Time: 67:04) 

 

Before proceeding to the next actual algorithm we will we will go into a hypothetical actual 

algorithm which actually can cannot exist in practice, but is used as a measure of comparison 

for all other algorithms. 

So, this one is called the optimal page replacement algorithm what is the basic idea of the 

algorithm, I replace the page that will not be referenced for the longest time in future this is 

where is the why it is impractical, I want to replace that page which will not be referenced for 

the longest time in future. Now I cannot see the future and therefore, this algorithm cannot be 

implemented in practice because I am saying the future this algorithm will give the lowest 

possible fault rate page fault rate, this will give the lowest possible page fault rate. However, it 

is impossible to implement, it does provide a good measure for other techniques. 

964



(Refer Slide Time: 68:00) 

 

So, if we take the same set of 12 reference strings what happens is that this first 4 will still 

incur a miss because these are compulsory this is compulsory this is compulsory. Now the 4 is 

4 is not there in memory. So, it will find out whom to replace it will find out that one which 

will not be used for the in for the longest time in future now out of this 12 reference 6 is never 

used in future.  

So, therefore, this 4; this 4 will replace 6 here previously it replaced 0 in the in the FIFO 

algorithm 4 replace 0, but here 4 replaces 6 because it can see the future and it sees that 6 will 

not be used for the longest time in future. So, it replace 4 replaces 6 then 0 is there in memory. 

So, it is a hit one is a hit 0 is again a hit because these are there in the page frames in physical 

memory 3 is again a miss whom will 3 replace? 3 will replace 0 because out of these 12, it is 

never being used in the future. So, 3 replaces 0 and this one is a miss again 1 2 and 1. So, 1 2 

and 1 are again hits.  

So, in this algorithm we see that we have in addition to the 4 compulsory misses we only have 

2 more um. So, we only have 2 more page faults I possibly have been talking of page faults as 

cache misses please bear with me then that was a mistake. So, these are all page faults not cache 

misses. So, I in addition to these 4 page faults I have I this one is a page fault and this one is a 

page fault. So, I have 6 page faults. So, the page fault rate is 6 out of 12 which is 0.50.  

965



So, so, previously in FIFO it was 0 point in FIFO the page fault it was 0.75 and then optimal 

page replacement give me a fault rate of 0.5. So, with the above reference string this is the best 

we can hope to do. 

(Refer Slide Time: 70:29) 

 

Then we come to the next algorithm as its, it’s a very popular algorithm; however, due to the 

problems with this implementation various approximations of the algorithm is used. So, we 

will first learn what the algorithm is. The basic idea is that you replace that page in memory 

that has not been accessed for the longest time in the past. So, this is practical because you can 

see the past you cannot see the future.  

So, although it may it is algorithm is costly, it is possible to look into the past and therefore, 

this can give it is an optimal policy looking back in time. So, if I do not have the option of 

looking forward in time which I cannot have this is the best possible alternative that I have as 

opposed to forward in time, it looks back in time and finds, fortunately programs tend to follow 

a similar behavior. So, looking back in time is almost always very beneficial, because it allows 

you to utilize locality of reference.  

966



(Refer Slide Time: 71:40) 

 

Now, we take the same reference string again same set of 12 references on this the first 4 are 

again compulsory, these are compulsory, these are compulsory and then the fourth one replaces 

whom the fourth one replaces. So, all because it will replace 0 the 4 will replace 0 because all 

have been used once and the least recently used is 0 because 0 2 1 6 the least recently used is 

0.  

So, 0 is replaced and. So, by 4 and then 0 is accessed again. So, this will result in a miss. So, 

who we will replace; obviously, 2 we will replace because that is the least recently used. So, 

after this one here 2 replaces sorry 0 replaces 2 and then the subsequent one is a hit this one is 

a hit, again 0 is a hit and then 3, 3 is replaced by whom 3 is replaced by the least recently used. 

So, 3 is replaced by 6 because 6 is least recently used among all the page frames that we have 

currently in memory 6 is the least recently used and therefore, 3 replaces 6.  

And then I have 1, 1 is a hit and then I have 2, 2 is a miss and who does 2 replace 2 replaces 4 

because 4 is the least recently used. So, using a least recently used scheme the page fault rate 

is 8 out of 12 which is 0.67. Therefore, it is not as good as optimal page replacement algorithm 

because we cannot see the future, but it is not as bad as FIFO it is the best that we can do 

looking into the past.  

967



(Refer Slide Time: 73:48) 

 

Now, as we told LRU is difficult to implement in practice because how do we keep track of 

the last page access, this is the problem requires special hardware support. So, I will I need to 

find out corresponding to each page; how recently, it was used in the past and for that we need 

to have we need to have special hardware support. So, there are 2 major solutions to this 

problem, one is a counter based solution.  

So, it uses hardware clock ticks on every memory reference on every memory reference I have 

a hardware clock tick. So, reference one tick is one reference two; so, out of these 12 reference; 

tick 1, tick, 2 up to tick 12. So, 12th reference is a tick number 12. So, the page referenced is 

marked with time. So, each page when I have accessed because this tick is progressing globally 

over all memory references, when a particular page is accessed I will mark the time at which it 

was accessed. 

So, in the future, I will be able to know when in the past was this page accessed because I am 

marking this page with the tick number when it is accessed. So, in future I will be able to access 

the tick number of this page to understand how back in the future this page was referenced. So, 

the page with the smallest time value is replaced the other way to implement this LRU is with 

the use of a stack we keep a stack of references, on every reference to a page we move we move 

it to the top of the stack. So, we keep a stack of references the. So, these are the memory 

references. So, pages 𝑝1, 𝑝2, 𝑝3 and 𝑝1 𝑝𝑗 𝑝𝑖 𝑝𝑗 something these are the stack of references and 

968



in every reference. So, if I reference this page in. So, this page is referenced then I take this 

page and move it to the top of the stack ok.  

So, this will require possibly a linked implementation of the stack to handle it efficiently. So, 

on every whatever it is it is costly, but we will see these are the solutions then these solutions 

also these exact solutions for LRU also do not suffice. So, people have devised different 

approximation algorithms, but we need to see the solutions first. So, we saw the counter based 

solution the other one is the stack based solution, we keep a stack of references on every 

reference to a page we move this page to the top of the stack the page at the bottom therefore, 

because at every reference, if the page is referenced, I am moving to the top of the stack which 

one is the page at the bottom the page at the bottom is the least recently used page the page at 

the bottom of the stack is the next to be replaced, because this is the least recently used page 

and this page will be selected for replacement.  

(Refer Slide Time: 77:06) 

 

Now, both these techniques will require additional hardware support both the counter based 

technique which keeps count which for each page I need to keep the value of the tick when it 

was referenced. So, this one as well as the stack implementation will require additional 

hardware support a memory reference is very is a very frequent phenomenon. So, at every 

memory reference, I cannot go back to the OS I cannot interrupt the OS and update the value 

of the tick for a counter based implementation or I cannot update the stack when the stack is 

implemented as a software when the stack is implemented in software why because this will 

969



be very costly because memory access is very common, and because it is very common, it is 

very frequent. So, it is impractical to invoke the software on every memory reference.  

So, what software meaning here is the OS I have to invoke the OS to find out who referenced 

this to basically update the tick value corresponding to a page. So, I cannot do so in software 

because memory references are common and software will be costly the overhead will be very 

high. So, this is why LRU is not often used and instead, we approximate LRU we use an 

approximate LRU.  

(Refer Slide Time: 78:37) 

 

So, the first way to the way to approximate LRU is the use of the reference bit which we have 

which we have already studied earlier that reference bit tells me that within a given epoch of 

time whether I have referenced a page or not so corresponding to. So, I have in the page table 

in the page table corresponding to each page I have a reference bit for each page, right. 

So, that reference bit tells me whether in the last epoch of time this page was replaced and at 

the beginning of each epoch a frame a stipulated interval of time at the beginning of the interval, 

what I do is I basically zero down all the differences and again find out, whether, it has it was 

referenced in the current epoch, I use a reference between the page table corresponding to each 

page and you know; what do I do this reference bit is set to 1, if this page is referenced in each 

epoch and at the end of the epoch I zero down all the reference bits I go to the OS I zero down 

all the reference bits and at a given time all the I try to find the page whose reference between 

is 0.  

970



So, in the absence of the reference bit I take the FIFO order. So, in the FIFO order I try to find 

that page. So, I find out what I find out pages whose reference bit is 0 if the reference bit 0, it 

means that it was not referenced in the current epoch of time. So, it is not being heavily used it 

is not being heavily used I am approximating it is not exact, but I am approximating that it is 

not being heavily used because in the current epoch of time it was not referenced. And I replace 

that page ok.  

This bit can then be cleared by the OS this simple hardware has led to a variety of algorithms. 

So, the first technique is that of approximate LRU is that I have a reference bit and that 

reference bit is there for each page in the page table and whenever a page is accessed within a 

given epoch of time, I set the reference bit at the end of the epoch I zero down all the reference 

bit corresponding to all pages. And then at any given time when I need a page to be replaced, 

I try to find out a page whose reference bit is 0 this will mean that in the current epoch it was 

not referenced and possibly this is not this page is not being heavily used and therefore, it is a 

good candidate to be replaced.  

(Refer Slide Time: 81:24) 

 

Then we come to sampled LRU. So, using the reference bit we generate a reference byte for 

each page in this in this technique. So, how do we get this reference byte at set time intervals 

which is this epoch I was talking about I take an interrupt and get the OS involved what do I 

do the OS reads the reference bit of each page and the reference bit is stuffed into the beginning 

971



of the byte for page. So, at the beginning byte of the page I stuff this I stuff this bit all reference 

bits are then cleared.  

So, on a page fault I replace the page with the smallest reference byte. 

(Refer Slide Time: 82:12) 

 

So, how do I take we will take an example? So, this is let us say the first byte of each page this 

one these ones are the this one is page one, page one, page 2, page 3, page 4, page 5. So, these 

are the first bytes and this is kept for reference bits. So, at a given point in time, let us say this 

is the value of the bytes and in this epoch the reference bit values are this; that means, in page 

for page 0, sorry, this is page 0 for page 0 in this particular epoch this page was accessed in 

this current time interval this page was accessed page 1 was not accessed, page 2 was not 

accessed, page 3 was accessed and page 4 was accessed. 

Then what happens I shift this bit sorry I shift this bit from here to the MSB this one at this 

place and I discard the I discard these I discard these ones I throw them off and I bring these 

bits into the MSB. So, after this I zero down all the references. So, what I have done I have 

taken the reference bit see that these reference bits these reference bits have now become the 

MSBs here have now become the MSBs here 1 1 0, 1 0 0 1 1, 1 0 0 1 1. So, these have now 

become the reference and these have come into the MSBs.  

Now, which one will be replaced the one with the smallest reference byte will then be replaced. 

So, this one is the one with the smallest reference byte; what does this tell me that this value 

972



basically the numerical value of this byte the numerical value of this byte. This is the smallest 

numerical value of this byte it tells me that it was replaced it was used this page was referenced 

in the previous memory. 

This is the least recently this is the least frequently this is the least frequently being used it was 

only used among the last 1, 2, 3, 4, 5, 6, 7, 8 epochs; among the last 8 epochs, it was only used 

once and how recently, it was used in the in the current, but one. That means, the previous 

frame in the previous to previous epoch, it was used once, but all others have a higher value 

and therefore, this one is the least recently used it becomes the least recently used and is 

therefore, replaced. 

(Refer Slide Time: 84:48) 

 

Then we come to the clock replacement algorithm now we come to the clock algorithm or the 

second chance page replacement algorithm this is another approximation of the LRU technique. 

So, here what happens on a page fault I search through pages if the pages reference bit is one 

if the reference bit is one; that means, it was referenced in the current epoch I set its reference 

bit to 0 and skip it. So, if the if the reference bit is one, I don’t replace this page, one thing to 

note here is that in the absence of this reference bit I use I am using FIFO replacement 

algorithm. 

Now, after seeing this among all these bits suppose I get a 0, I get a 0 reference bit. So, among 

all these bits which have 0 reference bit, I will use the FIFO technique whoever has among all 

973



those pages for which the reference bit is 0, I will replace that page which came at the earliest 

ok. 

Now, in the second chance page replacement algorithm if the next page that I am I am searching 

that the next page that I am looking for has a reference bit of 1, I don’t replace that page I give 

it a second chance, I set its reference bit to 0 and skip it, give it a second chance, if the pages 

reference bit is set to 0 if the pages reference bit is 0 if it is already 0 then I replace the page. 

So, I always start the search from where I left off in the second chance page replacement 

algorithm as like other algorithms I am searching for pages to be replaced.  

(Refer Slide Time: 86:47) 

 

Now, let us say; the last time I replace the page frame was at page number six. So, according 

to the last slide as we saw my current search will start from page number 6, here my current 

search will start here. So, let us say the pointer to the first page to check. So, this gives me the 

pointer to the first page to be checked. So, I user references 𝑃4 user references p4 page number 

4 which is currently not in the in the main memory. 

So, I start at page 6 𝑃6 has the reference bit. So, I set to 0 and go I give it a second chance 

because if the reference bit was 0 I would immediately use it for replacement because the 

reference bit is 1 I give it a second chance. So, what do I set this reference bit 1 to 0 and go to 

the next one I come here, I get this reference bit 1. So, again I go to 𝑃1, then I go to 𝑃1 𝑃6, then 

𝑃1 and 𝑃7 I find the reference bit to be one for all these 3 I change it to 0 and I move on when 

974



I come to when I come to 𝑃3, I see that the reference bit is already 0; so I therefore, choose 𝑃3 

for replacement. 

Now, let us say if all page frames had the reference bit of 1 if this would have a reference bit 

of 1 then it would go to 𝑃3 𝑃9 𝑃0 and then come back to 𝑃6. So, when it comes back to 𝑃6 it is 

surely will get a reference bit of 0 because it it says because the algorithm has set the reference 

bit to 0. So, only when all reference bits of all pages are one, will it choose um a possibly 

frequently used page otherwise it will go and choose a page whose reference bit is 0 ok.  

So, now so, what happens we start at page 6, we check page 6; page 1, page 7 and set their 

reference bit to 0 that is give them a second chance and then check page 3 and notice that its 

reference bit is 0, I select page 3 for replacement and set pointer to 𝑃9 for the next search, for 

the next search I will start from where I left off in the previous search. So, I replace this one in 

the in the previous search. So, I go to the next page frame which is 𝑃9 in the current in the next 

search, I will point to start mine next search with 𝑃9 for the next replacement.  

(Refer Slide Time: 89:24) 

 

Now, in the last algorithm that we will study we use dirty pages. So, I all I along with the 

reference bit I also use the dirty bit that that we had studied earlier. So, if a page has been 

written to it is dirty before a dirty page can be replaced, it must be written to the disk. So, this 

is this is what I we don’t want. So, reference a page can be reference, but a reference can be a 

write or a read, if it is only read if the page was referenced only for a read still the replacement 

975



is less costly than if the reference bit is 1 and then the page is also dirty. So, in a replacement I 

have to write this page first back into the disk and then bring in a new page.  

So, a clean page does not need to be written back. So, this is the advantage if the dirty bit is not 

set. So, the copy on disk is already up to date. So, I don’t need to write back you would rather 

replace an old clean page; that means, yes than an old dirty page. So, I want to choose an old 

clean page than an old dirty page. 

(Refer Slide Time: 90:36) 

 

So, this is the basis of the modified clock algorithm. So, the modified second chance algorithm. 

So, here it is very similar to the clock algorithm I similarly use a circular queue and keep the 

pointer to the last search and then start the search from there. So, you know; however, instead 

of 2 states. So, previously I already I only had 2 states for each page either the reference bit is 

0 or 1, these are the 2 states of each page.  

Now, I have 4 states and the 4 state is 00; that means, it is the reference bit is 0 as well as the 

dirty bit is 0 the ref not reference. That means, it is not referenced, it is an old page, but it is 

dirty; that means, that even if it is not replaced even if it is not referenced in the recent past if 

I replace if I choose this page I will have to replace this page if it is 10 it is referenced, but it is 

clean if; that means, it is used in the in the recent times in recent times it is being used this page 

is you being used heavily possibly, but it is being it is being read and it I don’t have to write it 

and if both are one; that means, it is both being heavily used and the page is also dirty.  

976



So, so, the order of preference for replacement goes down the order. So, this one is the highest 

preference highest preference and this is the lowest preference. 

(Refer Slide Time: 92:12) 

 

So, add a second bits; how do I implement it add a second bit to the page table. So, we have 

the reference bit as well as the dirty bit the hardware sets this bit on write to a page the OS can 

clear this bit at the end of each epoch let us say. Now, just do clock algorithm and look for the 

best page to replace it is the same, I want to do the best page to be replaced, but now this 

method will require may require multiple passes through the list. 

So, what will happen I will now first find try to find out none. Firstly, I will go through one 

round, I will setting the 0 reference bit to 0s, then I if all the ref, I do not find any if I do not 

find, I will try to find a page whose both bits are clean in the first round, if I do not find suppose 

for all of whom for which the reference bit is one I will set that to 0, then again in the next 

page, I will try to find someone with  0, if I don’t get I will go on searching. So, I may require 

multiple passes over this over a particular set of page frames to find the page frames that I want 

to replace. 

With this, we come to the end of this lecture. 

977


